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ABSTRACT. In the late 19th century, Sylvester and Cayley investigated the
properties of the partition function p(n,m). This function enumerates the
partitions of a non-negative integer n into exactly m parts. Here we investi-
gate the congruence properties of such functions and we obtain several infinite
classes of Ramanujan-type congruences.

1. INTRODUCTION

Through the study of the theory of invariants, J.J. Sylvester and Arthur Cayley
exploited and improved the methods of DeMorgan, Warburton and Herschel [I]
to make tremendous contributions to the understanding of the restricted partition
function p(n, m), the function which enumerates the partitions of n into exactly m
parts. They were able to establish explicit formulas for p(n,m) for m up to 12.

It was the work of Ramanujan [5] that initiated great interest in partition con-
gruences. He proved several divisibility properties of p(n), the general partition
function. The most basic of these are

p(5n +4) = 0 (mod 5),
p(7n +5) =0 (mod 7),
p(1ln +6) = 0 (mod 11).

The study of these and similar divisibility properties continues to be a very active
area of mathematical research. After Ramanujan, Watson [6] and Atkin [2] made
great contributions and most recently Ono [4] has proved that there are infinitely
many congruences for p(n).

The relationship betwen p(n, m) and p(n) is clear. The total number of of parti-
tions of n is equal to the sum of the number of partitions of n into exactly one part,
exactly two parts, and so forth until we conclude with the number of partitions of
n into exactly n parts:

(1) p(n) =p(n,1) +pn,2)+pn,3)+ ...+ p(n,n—1) + p(n,n).

Before we begin examining and proving the results of this paper, we will need
one definition so that we may properly state our results.

Definition 1. For any natural number &, we define lcm(k) to be the least common
multiple of the numbers from 1 to k.
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For example, lem(4) equals the least common multiple of 1, 2, 3, and 4 and so
we have lem(4) = 12. Furthermore, we note that for any odd prime ¢ we have
lem(¢ —1) - £ = lem(¥).

Although the discovery method for the results of this paper was combinatorial
and done without congruence properties in mind, the proofs utilize generating func-
tions and, as such, continue to underscore the power of this technique. The main
object of this paper is to prove the following theorem and a striking corollary.
=3

2 )
p(nl,0) —p(nl —lem(£) ,£) =0 (mod ¢).

Theorem 1. For ¢ an odd prime and n > lem(¢ — 1) —

Corollary 1. For ¢ an odd prime, n >0, and 0 <t < %,

p(n-lem(€) —t€,£) =0 (mod £).
These general results give us intriguing specific examples such as

p(60k + 35,5) — p(35,5) = 0 (mod 5),
p(420k,7) =0 (mod T7),
p(420k 4+ 406,7) =0 (mod 7),
and p(420k +413,7) =0 (mod 7).

2. BACKGROUND

We begin this section with an additional definition which is crucial in the work
below.

Definition 2. A polynomial P(q) of degree d is called an anti-reciprocal polynomial
if
(2) q* (P(1/q)) = —P(q).

1— lem(m—1)\m

Lemma 1. The rational function (17(q)(17q2)__.(17qm) is an anti-reciprocal polyno-

m-—m

mial of degree d =lem(m — 1) -m — M=

Proof. We begin with the rational function

(1 _ qlcm(m—l))m

3 K., q) = ;
@ A T e I )
. . . m27m
which is a polynomial of degree d = lem(m — 1) - m — ™™ because
(@) Kn(g) = (1—¢ D) (14g+¢+-+ MDY

(1 +qz + q4 4. Jrql<:m(mf1)f2)
(14 q(m—l) 4 q2(m—1) NI qlcm(m—l)—(m—l))'
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We will now prove that K,,(q) is an anti-reciprocal polynomial by showing that
¢ K, (1/q) = —K,,(q). Multiplying K,,(1/q) by ¢ and simplifying yields

qd'(l—m)
1 1 1
t=3) (1) (1)

d. qlcm(m—l)_l m d (qlcm(m—l)_l)m
q qlcm(m—l) q -

qlcm(m)~m

¢ (Km(1/q)) = (

- (%1) (qzq;l) ~-~(q2;111) - ((q—l)(q?—l):imm—l—l))

qEn:O "
777,2—77],
_ qd(qlcm(mfl) _ 1)m . g
qlcm(m)~m (C] — 1)(q2 _ 1) ce (qm—l _ 1)
_ qd . (qlcm(mfl) _ 1)m
ememym _~(5) (a= 1@ =1) (@' = 1)
_ ﬁ . (qlcm(mfl) —1)m _ (qlcm(m—l) —1)m K. (o)
@ @ D@D ) D@ Do
Thus K,,(q) is an anti-reciprocal polynomial. O

3. PROOF OF THE MAIN THEOREM

We now prove Theorem [I.

Proof. 1t is well known that the generating function for the number of partitions
of n into exactly ¢ parts is given by

L

1-q¢)(1—-¢*)---(1-¢"

The generating formula for p(n, £) — p(n — lem(¥), £) is likewise given by

(5) S pnb)q" = a
n=0

o qe(l _ qlcm(e))

6) D (pn )= pln —lem(0), )" = T g

n=0
Let us now consider the right-hand side of our generating function, which we

rewrite as
_ lcm(e))
¢ (1 q

" 7 T-ag0-@ -1

In light of the fact that ¢ divides (f) for 0 < j < ¢, we see that

(1 — qlcm(z)) B (1— qlcm(e—l))é
1-q1-¢>) - (1-¢") (1-ql-¢) - 1-¢""

We can now rewrite () using the notation from Section 2, where Ky(g) is an

(mod ?).

i-reci i 02—,
anti-reciprocal polynomial of degree d = lem(¢) — =
> ¢
(8) Z (p(n, E) - p(n - lcm(g)v E)) qn = 1 z qe : Kg((]) (mod E)

n=0
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We now apply the anti-reciprocal property to (8), so that we may consider two
cases which arise depending on the parity of d.

Case 1: Suppose d is even. We use the anti-reciprocal property of Ky(q) to
organize all of its terms by first listing those ¢* where a = 0 (mod ¢). These are
followed by the remaining ¢ kg (¢), a short-hand notation for all those terms of
Ky(q) such that 8 # 0 (mod £):

Ki(q) = (1 +ag’ +bg* 4yt T +0g7 —ygt T — o —ag? T - qd)
+ aki(¢") + Ra(d) + -+ 4" e (d)
1_qd l_qd72€ 1_qd74€ 0 1_q2l
= (1-¢° ¢ Y e T ¢
( Q)<1_q4+aq g T e

+ qk1(q") + ka(¢") + -+ ¢ ko1 (d").

_a o d-2¢ _d—ae
Let Le(¢") = (124 + aq" 555 + b 152,

Ki(q) = (1= ") Le(q") + ak1(q") + @ka(q") + -+ ¢ e ().
Case 2: Suppose d is odd. Case 2 is done just as Case 1, the only difference

being that there is no middle term of L,(q") (with notation o = odd).
Writing L(q?) for L,(q%) or L.(q"), as appropriate, we have

doetygit 11‘_3;2) so that

9 Kelq) = (1= ") L(a") + ak1(a) + @ka(q") + - + ¢ e (4F).
We put together equations () and (@) to conclude the proof of Theorem [l
n=0
¢

- (L(q) (1= ¢") + qk1(q") + ¢*ka(q") + -+ + ¢" "ke—1(q")) (mod £)

ak1(q") + ¢®ka(q") + -+ + ¢ Tko—1(q")
:qeL(qé)Jrqé( - T :

l 2 £ £—1 £
Notice that (qkl(q )+aq kz(ql)j;[-~+q ke—1(q")

1—¢

) contributes nothing to the coeffi-

cients of ¢*/. Since ¢*L(q") is a polynomial of degree d+¢ = lem({)— 52%32 it follows

that for an odd prime ¢ and n > lem(¢ — 1) — 2_73, p(nl,£) — p(nl —lem(¥),4) =
0 (mod ¥). O
4. PROOF OF THE COROLLARY TO THE MAIN THEOREM
We now prove Corollary [Il.
Corollary 0. For ¢ an odd prime, n >0, and 0 <t < Z_TS,
p(n-lem(£) —tl,£) =0 (mod ¢).
Proof. In Theorem[T], set n = k - lem(¢ — 1) — ¢ for k an integer so that
p([k-lem(£ —1) —¢] - £,€) — p([k - lem(¢ — 1) — t] - £ — lem(¥), £)
= p(k-lem(f) — t£,€) — p([k — 1] - lem(¢) — ¢£,£) =0 (mod ¢).
Proceed by induction on k. Let k =1 so that
p(lem(€) — t,¢) = p(lem(£) —t€,£) — 0 = p(lem(f) — t¢,£) — p(—tf,£) =0 (mod ¢).
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Now suppose p(n - lem(¢) — t£,£) =0 (mod ¢) is true for all n < k. Hence,
p(k - lem(€) — t€,0) — p([k — 1] - lem(¢) — t¢,£) = 0 (mod ¥),

which implies that p(k - lem(£) — t£,£) = 0 (mod ¢) by the induction hypothesis.
Thus the corollary is proved. O

In conclusion, Corollary [ gives us Z’Tl Ramanujan-like congruences for every

odd prime ¢. There are numerous related results arising from extensions of the
methods of this paper. These will be explored in a subsequent publication.
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